Summarize uncertainty for a vbdf objects
vb_summary.Rd
Summarize uncertainty for a vbdf objects. Analysis must have run with bootstrap iterations.
vb_uncertainty
is just an alias for vb_summary
.
Usage
vb_summary(
object,
type = c("discrete", "continuous", "binned"),
estimates = grep("prob|pr_turnout|pr_votedem|pr_voterep|cond_rep|net_rep",
names(object), value = TRUE),
na.rm = FALSE,
funcs = c("mean", "median", "low", "high"),
low_ci = 0.025,
high_ci = 0.975,
bin_col,
tolerance = sqrt(.Machine$double.eps)
)
vb_uncertainty(
object,
type = c("discrete", "continuous", "binned"),
estimates = grep("prob|pr_turnout|pr_votedem|pr_voterep|cond_rep|net_rep",
names(object), value = TRUE),
na.rm = FALSE,
funcs = c("mean", "median", "low", "high"),
low_ci = 0.025,
high_ci = 0.975,
bin_col,
tolerance = sqrt(.Machine$double.eps)
)
Arguments
- object
a
vbdf
object, usually the output of [vb_discrete], [vb_continuous], or [vb_difference].- type
a string naming the type of independent variable summary. Use
"binned"
when using the output of [vb_continuous] plus a binned version of the continuous bloc variable.- estimates
character vector naming columns for which to calculate uncertainty estimates.
- na.rm
logical indicating whether to remove
NA
values inestimates
.- funcs
character vector of summary functions to apply to
estimates
. Alternatively, supply your own list of functions, which should accept a numeric vector input and return a scalar.- low_ci
numeric. If you include the string
"low"
infuncs
, then use this argument to control the lower bound of the confidence interval.- high_ci
numeric. If you include the string
"high"
infuncs
, then use this argument to control the upper bound of the confidence interval.- bin_col
character vector naming the column(s) that define the bins. Used only when
type
is"binned"
.- tolerance
tolerance used when checking range of probability estimates